Brugada syndrome

Ji-Eun Ban, MD. Ewha University Medical Center Seoul, Korea

• Conflict of interest : non declared

Brugada Syndrome

1992, 1st report

Brugada, J. et al. J Am Coll Cardiol. 2018;72(9):1046–59.

Coved type ST-segment in V1-V2 V1-V

V1-V2 positioned in the 2nd, 3rd or 4th ICS

• spontaneously or provocative drug test with iv sodium-channel blockers (ajmaline, flecainide, procainamide, or pilsicainide)

Electrocardiographic Patterns

Additional criteria

: only suggestive of BrS

Mechanisms of the Brugada ECG pattern.

Circ Arrhythm Electrophysiol. 2010;3:283-290

Ionic Basis and Arrhythmia Mechanisms

Antzelevitch C. J Cardiovasc Electrophysiol 2001: 12;268-272

Genetic basis

Brugada, J. et al. J Am Coll Cardiol. 2018;72(9):1046–59.

Molecular structure of the SCN5A transcript

Wilde, A.A.M. et al. J Am Coll Cardiol EP. 2018;4(5):569-79.

Loss of function mutations in SCN5A

Wilde, A.A.M. et al. J Am Coll Cardiol EP. 2018;4(5):569–79.

Pharmacological Test

sodium-channel blocking agent

Intravenous
Ajmaline, and flecainide

- Iv Procainamide
- po flecainide, propafenone

-25% of false-negative

Clinical manifestations

*Sx often occur during rest or sleep, during a febrile state or with vagotonic conditions, but rarely during exercise (syncope or SCD, 17-42 %)

*Mean age of sudden death of 41 ±15 years

* Male predominance (18-10 times)

febrile-induced VF in type 1 ECG

Morita H. HR 2018

- 1st : 2-year-old boy with influenza VT of various configurations during febril episode
- More than 100 reports of fever induced VF
- Frequent in **pediatric** patients
- Frequently associated with an **SCN5A mutation**.

*Mechanism of fever-induced ECG change and arrhythmia in BrS

- changes in sodium channel function
 - : Sodium current reduction during hyperthermia
 - \rightarrow change the action potential morphology & promote VF

Gender differences and their mechanisms

- Male predominance J Arrhythm 2016, HR 2018 -Asian countries : 90%– 96%, European : 60%–70%
- women had lower incidences of Sx and spontaneous type 1 ECG pattern. Benito et al. 2008 JACC
- Mechanism Morita H. HR 2018

long QT syndrome

: gain of function Female predominance Estrogen- ↑QT interval by decreasing Ito, IK, and IK1 and increasing ICa-L.

Brugada syndrome

- : loss of function
- Male predominence

Testosterone- ↑ outward currents (Ito, Ik1, and

- Iks), decreases Ica-L, and ↓QT interval
- → action potential changes
- → repolarization heterogeneity & phase 2 reentry

Risk stratification

Electrocardiographic Parameters and Fatal Arrhythmic Events

246 pts (236 men; mean age, 47.6±13.6 yrs) with a Brugada-type ECG

Fragmented QRS (f-QRS)

Early repolarization (ER)

Tokioka K et al. J Am Coll Cardiol 2014;63:2131-8

Kaplan-Meier Analysis of VF/SCD Events

The combination of **depolarization and repolarization abnormalities** in BrS is associated with **later VF events**

S-Wave in Lead I

347 pts (78.4% male; mean age 45 ±13.1 yrs) with spontaneous type 1 BrS

The presence of a **wide and/or large S-wave (≥0.1 mV and/or ≥40 ms) in lead I** was a powerful predictor for VF/SCD in pts with BrS.

Other risk factors

• An effective refractory period <200 ms

J Am Coll Cardiol 2012;59:37–45. Heart Rhythm 2012;9:242–248

• Male gender

Benito et al. 2008 JACC

• Spontaneous AF (10-53 %)

J Cardiovasc Electrophysiol 2006;17:577–583. J Am Coll Cardiol 2008;51:1169–1175 J Am Coll Cardiol. 2016; 67(12):1427–40.

• Genetic analysis – no conclusive studies

Management

2013 HRS/EHRA/APHRS Expert Consensus Statement

Pharmacological Treatment

• **Isoproterenol** (: increases the L-type calcium current)

- : Tx of electrical storm in BrS
 - controlled data are not available.
- Quinidine (Class Ia : Ito and Ikr blocker effects)
 - : prevent induction of VF suppress spontaneous ventricular arrhythmias
 - Ix (1) pts with multiple ICD shocks or arrhythmic storms(2) an alternative to an ICD in children(3) for the Tx of supraventricular arrhythmias

Belhassen B. Circ Arrhythm Electrophysiol 2016

Epicardial substrate ablation for Brugada syndrome

Nademanee K et al. Circulation. 2011;123:1270-1279

Heart Rhythm 2017;14:457–461

Effect of sodium channel blockers in identifying subtle epicardial substrate

Baseline

Ajmaline

(2.2 cm2)

(21.5 cm2)

Epicardial color-coded duration maps

Circ Arrhythm Electrophysiol. 2017

Voltage Mapping, Potential Duration Mapping, Activation mapping of the RV Epicardium

Electrical Substrate Elimination in 135 Consecutive Patients With Brugada Syndrome

Pappone C et al. Circ Arrhythm Electrophysiol. 2017

135 symptomatic Brugada syndrome pts having ICD-63 pts, documented VT/VF (27 pts, multiple ICD shocks)-72 pts, inducible VT/VF without ECG documentation

Substrate based-radiofrequency ablation results in ECG normalization and VT/VF noninducibility.

Summary

- In Brugada syndrome, SCN5A mutations are associated with Nav1.5 loss-of-function leading to a decreased $I_{\rm Na}$.
- Detection of high risk Brugada syndrome is an important issue in the clinical setting.
- the ICD is the most accepted therapy to protect patients at risk.
- Substrate based epicardial ablation in selected patients has been used as a new therapy.

Thank you for your attention !